ESTUDO PARA LOCAÇÃO E PROJETO DE POÇO TUBULAR PROFUNDO

Linha Cerro da Figueira – Passa Sete

Resumo

O presente projeto compõe parte da documentação a ser apresentada com vistas a subsidiar o processo licitatório para contratação de empresa para a realização de obras para a perfuração de poço para captação de água subterrânea na localidade de Linha Cerro da Figueira, no município de Passa Sete - RS

SUMÁRIO

I	INTRODUÇÃO2		
II	I.1 OBJETIVOS	4	
III	II.1 GEOLOGIA REGIONAL	6 7	
IV	PROJETO DE PERFURAÇÃO	13	
V	IV.1 LOCALIZAÇÃO E VIAS DE ACESSO	14 14 15 15 15	
	V.1 COMPLETAÇÃO	16	
VI	V.1.2 CIMENTAÇÕES V.2 DESENVOLVIMENTO DO POÇO V.3 TAMPONAMENTO V.4 SISTEMA DE BOMBEAMENTO V.5 LAJE E PROTEÇÃO SANITÁRIA V.6 RELATÓRIO FINAL DE PERFURAÇÃO ETAPAS PÓS PERFURAÇÃO	16 17 18	
	VI.1 TESTE DE BOMBEAMENTO E RECUPERAÇÃO	19 19	
	VI.1.3 TESTE DE RECUPERAÇÃO DO NÍVEL	21 GIC <i>A</i>	
\/!!	VI.4 CERCAMENTOOUTONIONE DE LA COMUNICIONE DE LA COMUNICIONE DE LA COMUNICIONE DE LA COMUNICIONE DE LA C OUTORGA DE USO DO RECURSO HÍDRICO SUBTERRÂNEO	22	
	IMPLANTAÇÃO DE MEDIDAS MITIGADORAS DE IMPACTO AMBIENTAL E DE SAÚDE DOS PROFISSIONAIS		
IX	RESPONSÁVEI	24	

Lista de Figuras

Figura 1. Localização da rede a ser abastecida pelo poço	2
Figura 2. Mapa geológico do local de perfuração do poço. Fonte: Modificado por Integra (Ambiental de CPRM, 2007	
Figura 3. Modelo de elevação do terreno com exagero vertical de 2x. Fonte: Google Earth	8
Figura 4. Mapa Geomorfológico da área de estudo. Fonte: BDIA, IBGE - 2019	9
Figura 5. Mapa de lineamentos da área. Fonte: Imagem SRTM	10
Figura 6. Mapa hidrogeológico da região onde será perfurado o poço. Fonte: Modificado por Geologia Ambiental de CPRM, 2006	
Figura 7. Equipamento de detecção de água em campo	12
Figura 8. Imagem de satélite da cidade de Passa Sete. Em azul a rota entre a Prefeitura de Pass o local onde será realizada a perfuração do poço	
Figura 9. Modelo de planilha para realização do teste de vazão com apresentação dos resulta gráfico com escala logarítmica e equação da reta	
Figura 10. Perfil geológico e construtivo do poço.	23

I INTRODUÇÃO

O presente documento tem por finalidade apresentar projeto para perfuração de poço tubular profundo, com instalação do conjunto de bombeamento e adução de água, tomando-se como base às seguintes premissas: segurança, funcionalidade, e facilidade de execução. A implantação de este projeto objetiva atender à crescente demanda de consumo de água no município.

As coordenadas geográficas apresentadas neste trabalho foram obtidas com um GPS Garmin 62s, o ponto de referência para a localização possui coordenadas 29°26'35.81"S e 52°54'01.08"O, com DATUM SIRGAS2000.

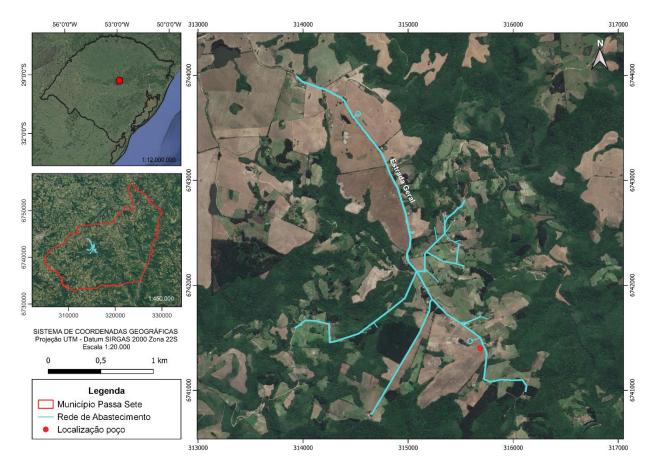


Figura 1. Localização da rede a ser abastecida pelo poço.

I.1 OBJETIVOS

O presente projeto visa subsidiar o processo licitatório para contratação de empresa para a realização de obras de perfuração de poço e implantação de sistema de captação de água subterrânea com a finalidade de ampliação do sistema de abastecimento público de água potável na localidade.

Dentre os objetivos específico estão o enquadramento das características do meio físico existente ao longo da área total do terreno para definir a locação do poço e elaboração de projeto de poço com detalhamento dos aspectos construtivos, contemplando os seguintes itens:

- a) Localização e acesso à área, com croquis regional e local; Descrição sucinta dos aspectos principais do meio-físico (geologia, hidrografia, geomorfologia e hidrogeologia) obtida a partir de levantamento de dados secundários;
- b) Mapeamento geológico básico da área do terreno com a descrição das litologias do substrato e a indicação das respectivas formações onde se inserem;
- c) Levantamento do uso e ocupação do entorno da área e caracterização em imagem (Google Earth) dos aspectos mais significativos do uso atual;
- d) Levantamento no cadastro do SIAGAS e DRH de poços tubulares profundos instalados e licenciados, próximos à área;
- e) Estudo geofísico para determinar o local com maior possibilidade de presença de água;
- f) Detalhamento do método construtivo e perfil geológico esperado.

I.2 METODOLOGIA

A metodologia empregada consiste na consulta bibliográfica para obtenção de dados secundários e visita in loco para caracterização do terreno e informações quanto a geologia, geomorfologia e hidrogeologia. Para levantamento dos dados aqui apresentados, foi realizado vistoria de inspeções in loco.

I.3 DADOS DO EMPREENDEDOR

Nome MUNICÍPIO DE PASSA SETE

Endereço Avenida Pinheiro, nº 1500, Centro – 96908-000

Município Passa Sete/RS

CNPJ 01.612.364/0001-95

Telefone (51) 3616-6041

E-mail administracao@passasete.rs.gov.br

I.4 DADOS DA EMPRESA RESPONSÁVEL PELA AVALIAÇÃO

Razão Social	INTEGRA GEOLOGIA AMBIENTAL LTDA		
Endereço	Rua Ervino Arthur Thomas, 364 – Universitário		
Município	icípio Lajeado/RS		
CNPJ	28.075.541/0001-06		
Contato	ontato Geólogo Jonatas Monteiro da Silva Avelino		
E-mail	contato@integraambiental.com		
Telefone	ne (51) 4064-0247 – (51) 98652-6702 – (51) 97027126		
Registro CREA RS	228179		
Registro CRBio RS	1114-03/2019		
Registro CRQ RS	053610081		
	Alberto Togni	Engenheiro Mecânico	
	Charles Otaviano Ferreira Da Silva	Engenheiro Civil	
	Glauco Rafaele Bao	Engenheiro Químico	
Responsáveis Técnicos	Guilherme Dorneles Galvão	Engenheiro Civil	
CREA	Gustavo Schmidt Dos Anjos	Engenheiro Eletricista	
ONLA	Jonatas Monteiro Da Silva Avelino	Geólogo	
	Leonardo Ferreira Cenci	Engenheiro Agrônomo	
	_Lair Schirmer	Engenheiro Ambiental	
	Larissa Barreto Müller	Engenheira Agrônoma	
Responsáveis Técnicos	Franciela Dal Cero	Bióloga	
CRBio	Guilherme André Spohr	Biólogo	
Responsável Técnico	Gabriel Luis Grave	Técnico Químico	
CRQ	Glauco Rafaele Bao	Engenheiro Químico	

I.5 TÉCNICO RESPONSÁVEL PELO TRABALHO

Profissional	Formação	Registro	Função
Jonatas Monteiro da Silva Avelino	Geólogo	CREA RS215058	Responsável Técnico
Sabrina Bruski	Geóloga		Analista Ambiental

A Anotação de Responsabilidade Técnica (ART) do responsável técnico está apresentada no Anexo II.

II CARACTERIZAÇÃO DO MEIO FÍSICO

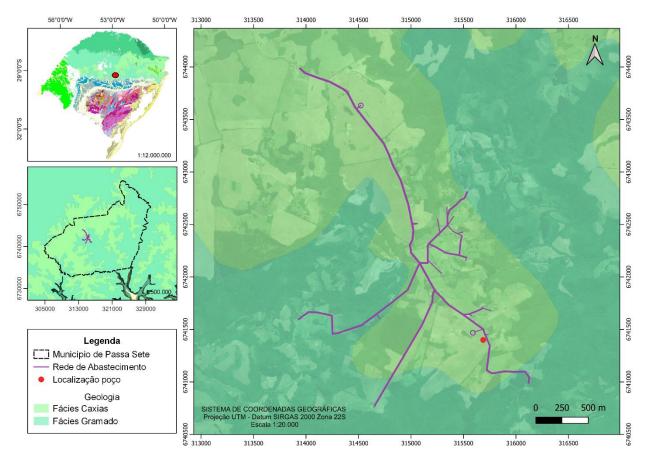
II.1 GEOLOGIA REGIONAL

As unidades geológicas da região estão inseridas no contexto da Bacia do Paraná e pertencem ao intervalo Permo-Triássico. Esta bacia é composta por diversas formações sedimentares cobertas por derrames de rochas vulcânicas no topo e situa-se na porção centro-leste da América do Sul. Desenvolveu-se durante parte das eras Paleozóica e Mesozóica, e seu registro sedimentar compreende rochas formadas do Período Ordoviciano ao Cretáceo, abrangendo um intervalo de tempo entre 460 e 65 milhões de anos atrás.

Durante o Cretáceo volumes gigantescos de lavas foram injetados e extravasados em toda a Bacia do Paraná, cobrindo o então deserto Botucatu (representado pela Formação Botucatu) em dezenas de derrames que constituem a Formação Serra Geral.

A Formação Botucatu é constituída por rochas sedimentares do Triássico Superior, subjacentes a Formação Serra Geral ou aflorantes em porções localizadas, com espessuras que variam de 20 a 120 metros. São arenitos arcóseos a quartzosos de coloração rosada, boa seleção e granulometria variando de média a fina. Como estrutura predominante apresenta estratificações cruzadas de grande porte, características de ambiente eólico.

A Formação Serra Geral compreende os derrames de lava basáltica de material toleítico, com intercalações arenosas, relacionada aos eventos de vulcanismo fissural que recobrem 1,2 milhões de km². É composta essencialmente por basaltos, andesitos, riolitos e riodacitos e formações sedimentares em menor proporção. O município é composto pelas fácies Caxias e fácies Gramado conforme verificado na Figura 2.


II.2 GEOLOGIA LOCAL

De acordo com o mapa geológico do estado do estado do Rio Grande do Sul (CPRM, 2007), a área encontra-se na classificação litológica Formação Serra Geral, Grupo São Bento - "Fácies Caxias", pertencente ao contexto estratigráfico da Bacia do Paraná (Figura 2).

A Fácies Caxias é formada por derrames de composição intermediária a ácida, riodacitos a riolitos, mesocráticos, microgranulares a vitrofíricos, textura esferulítica, pode apresentar forte disjunção tabular no topo dos derrames e maciço na porção central. Também pode apresentar dobras de fluxo e autobrechas e vesículas preenchidas por calcedônia e ágata.

Figura 2. Mapa geológico do local de perfuração do poço. Fonte: Modificado por Integra Geologia Ambiental de CPRM, 2007.

II.3 GEOMORFOLOGIA

A geomorfologia presente no município é composta pelo Planalto dos Campos Gerais e Serra Geral. O poço está localizado no Planalto dos Campos Gerais. (Figura 4).

A geomorfologia Serra Geral configura-se basicamente como uma borda dissecada do Planalto dos Campos Gerais. O relevo é escarpado, com encostas íngremes e vales encaixados. O sistema de drenagem apresenta forte controle estrutural. Ocorre a predominância de solos rasos com menos de 50cm de profundidade, do tipo neossolo litólico e ocorrência de afloramentos nas encostas mais íngremes. O relevo é esculpido sobre rochas vulcânicas básicas, predominando o processo de dissecação diferencial, responsável por expressivo recuo das encostas ao longo dos vales fluviais.

O Planalto dos Campos Gerais é caracterizado por apresentarem estágios de degradação sendo separadas por ressaltos e escarpas, com dissecação diferencial, apresentando profundo entalhamento fluvial e forte controle estrutural. Nas áreas de morfologia plana predominam solos de profundidade acima de 1,5m, do tipo argissolo vermelho. Nos locais com relevo mais movimentado, tem-se a ocorrência de solos rasos, com profundidade inferior a 50cm, do tipo neossolo litólico e presença de afloramentos. O relevo é relativamente plano composto predominantemente por processos de pediplanação, associados a ataques erosivos sucessivos que dissecaram parcialmente o planalto.

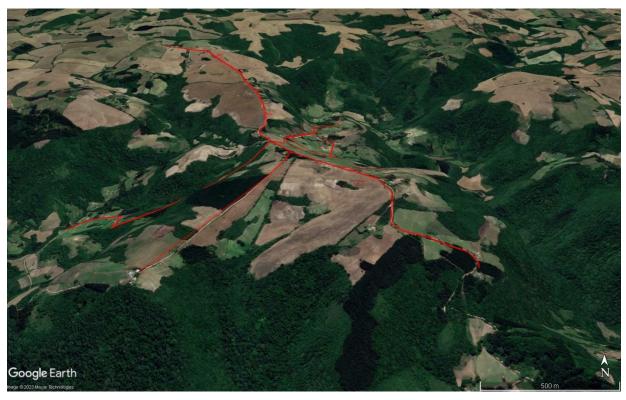


Figura 3. Modelo de elevação do terreno com exagero vertical de 2x. Fonte: Google Earth.

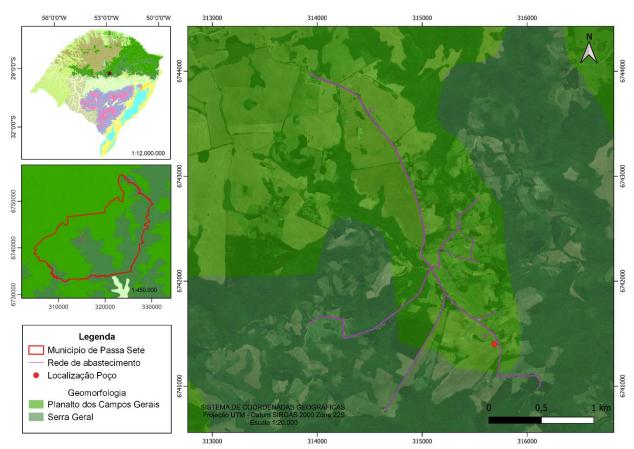


Figura 4. Mapa Geomorfológico da área de estudo. Fonte: BDIA, IBGE - 2019.

II.4 HIDROGEOLOGIA

Os tipos de aquíferos estão intimamente associados às unidades geológicas que ocorrem na área em estudo. As rochas que os compõe foram formadas por diferentes períodos geológicos e ambientes climáticos, sendo que esses fatores imprimiram propriedades hidrogeológicas diferenciadas a cada um dos aquíferos, as quais se refletem na sua produtividade e, também, na sua vulnerabilidade à poluição.

A região se mostra extremamente complexa do ponto de vista estrutural, litológico e hidroestratigráfico. Sob aspecto estrutural, ela encontra-se afetada pelo sistema de falhamentos de direção noroeste, associados com ao Sistema de Falha Terra de Areia - Posadas. Na Figura 5, traçou-se os lineamentos de drenagem extraídos com base na análise da imagem SRTM. Os lineamentos mostram direção preferencial NE-SW.

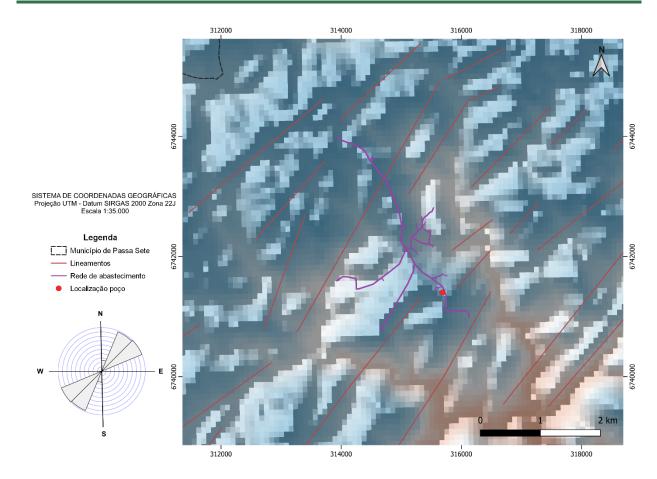


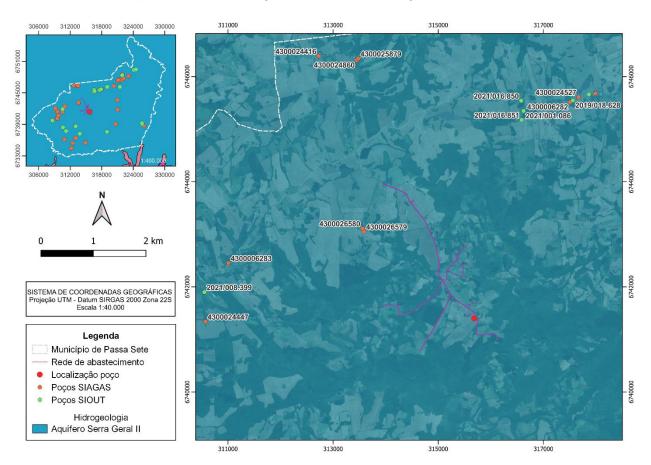
Figura 5. Mapa de lineamentos da área. Fonte: Imagem SRTM.

Os aquíferos na região são do tipo fraturados e estão associadas as rochas da Formação Serra Geral formando o Sistema de Aquíferos Serra Geral (SASG). Os condicionantes geológicos dos aquíferos fraturados estão relacionados com as estruturas tectônicas, relevo, litologia e solos. A tectônica influencia na circulação de água nas rochas cristalinas, pois gera caminhos em que a água irá percolar e controla as características geométricas como abertura, direções, densidade e conectividade das fraturas.

Quanto às litologias, os poços perfurados na região apresentam profundidades entre 98 a 300 m, correspondendo aos basaltos da Formação Serra Geral. A hidroestratigrafia da área pode ser resumida como aquíferos fraturados do Serra Geral (Figura 6). A tabela abaixo mostra os poços cadastrados nos sistemas SIOUT/DRH e SIAGAS/CPRM com sua respectiva profundidade e vazão.

Tabela 1. Poços próximos cadastrados nos sistemas SIAGAS e SIOUT.

Nome / Processo	Profundidade (m)	Q (m³/h)	Nível Dinâmico (m)
SIAGAS – 4300026580	298	-	-
SIAGAS – 4300026579	300	-	-
SIAGAS – 4300006283	98	4,2	-
SIAGAS – 4300006282	148		-
SIOUT - 2021/008.399	Prefeitura	-	-



SIOUT – 2021/016.851	Prefeitura	3,6	-
SIOUT - 2021/016.850	Prefeitura	2,0	•

Sistema Aquífero Serra Geral II

De forma geral o Sistema Aquífero Serra Geral II ocupa a parte oeste do Estado, os limites das rochas vulcânicas com o rio Uruguai e as litologias gonduânicas além da extensa área nordeste do planalto associada com os derrames da Unidade Hidroestratigráfica Serra Geral. Suas litologias são predominantemente riolitos, riodacitos e em menor proporção, basaltos fraturados. A capacidade específica é inferior a 0,5 m³/h/m, entretanto, excepcionalmente em áreas mais fraturadas ou com arenitos na base do sistema, podem ser encontrados valores superiores a 2 m³/h/m. As salinidades apresentam valores baixos, geralmente inferiores a 250 mg/l. Valores maiores de pH, salinidade e teores de sódio podem ser encontrados nas áreas influenciadas por descargas ascendentes do Sistema Aquífero Guarani.

Com característica fissural, este sistema aquífero desenvolve-se ao longo de fraturas e descontinuidades, compreendendo zonas vesiculares e amigdaloidais de topo de derrame e zonas de disjunção horizontal. Estas feições, quando interceptadas por zonas de fraturas, interconectam-se e podem armazenar grandes volumes de água.

Figura 6. Mapa hidrogeológico da região onde será perfurado o poço. Fonte: Modificado por Integra Geologia Ambiental de CPRM, 2006.

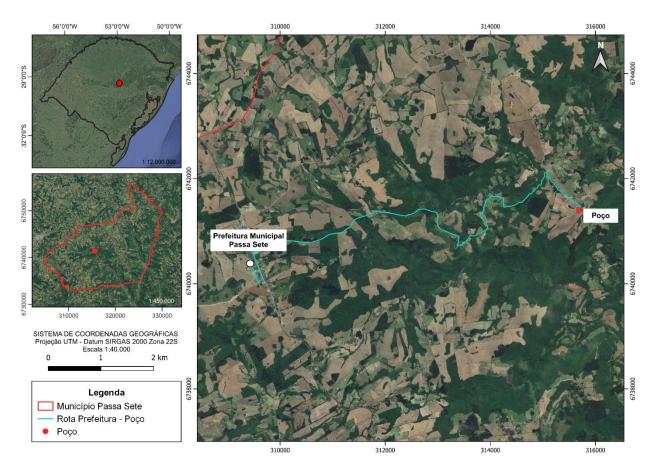
III ESTUDO GEOFÍSICO

Foram realizados caminhamentos utilizando dispositivo detentor de um sistema de longo alcance, onde foram verificadas zonas propícias a presença água subterrânea. Posteriormente, foram realizados estudo geofísico de eletrorresistividade onde através das sondas fincadas no solo foi possível estabelecer exatamente o melhor local para perfurar o poço.

O equipamento utilizado para estudo foi o RIVER G, que permite atingir profundidade de até 1.500 metros sob o solo e uma faixa frontal de 3.000 metros na superfície da terra, com possibilidade de determinar o tipo de água se é doce ou salgada. Trabalhando nos terrenos mais difíceis e trabalhando em seis tipos de solo: (rochoso – argiloso – mineral – natural – arenoso).

Figura 7. Equipamento de detecção de água em campo.

Após os testes foi estabelecido que o melhor local para perfuração se encontra nas coordenadas Geográficas 29°26'35.81"S e 52°54'01.08"O e há estimativa de encontrar boa quantidade de água entre 256 e 300 m de profundidade.



IV PROJETO DE PERFURAÇÃO

IV.1 LOCALIZAÇÃO E VIAS DE ACESSO

O ponto da perfuração coordenadas latitude 29°26'35.81"S e longitude 52°54'01.08"O e de acordo com a Lei Municipal número 143 de 1998 que define os perímetros urbanos a área de estudo para a locação do poço se localiza na Zona Rural do município.

O local pode ser facilmente acessado partindo da Prefeitura de Passa Sete por ruas pavimentadas e não há qualquer dificuldade para ao acesso de máquinas de grande porte. A distância entre a Prefeitura e o local da perfuração é de aproximadamente 9,7 km. Saindo da prefeitura na avenida Pinheiro, número 1500, seguir à sul e dobrar à esquerda na Travessa Karnopp e em seguida virar à direita na Avenida Adolfo Emílio Karnopp e seguir por 500 m. Após, continuar para Estrada Campo do Sobradinho e seguir por aproximadamente 7,7 km e dobrar à direita na Estrada geral e chegará a rede de abastecimento e seguindo por 1,0 km chegará ao local de perfuração do poço que estará à direita, conforme (Figura 8).

Figura 8. Imagem de satélite da cidade de Passa Sete. Em azul a rota entre a Prefeitura de Passa Sete e o local onde será realizada a perfuração do poço.

IV.2 ETAPA PRELIMINAR

Antes de iniciar a perfuração, a empresa responsável pela perfuração deverá solicitar a Anuência Prévia no SIOUT/DRH-RS (Sistema de Outorga de Água do Rio Grande do Sul/ Departamento de Recursos Hídricos), indicando as coordenadas definidas previamente, bem como os dados de construção e litologia definidos neste projeto. A empresa perfuradora deverá obrigatoriamente estar cadastrada no SIOUT/DRH.

O poço será perfurado em rochas basálticas da Formação Serra Geral e neste contexto a água está presente nas descontinuidades geológicas, planos de estratificação, poros, eventuais fraturas e falhamentos locais e/ou regionais. A vazão dos poços varia de 5.000 litros/hora a 20.000 litros/hora, no entanto nos poços de grande vazão (>20.000 litros/hora) guardam estreita ligação com estruturas tectônicas regionais.

Há expectativa de obtenção de vazões próximas a 5 m³/h e para isso pretende-se perfurar até a profundidade de 300 m.

A empresa INTEGRA GEOLOGIA AMBIENTAL LTDA será responsável pela análise e interpretação dos dados geológicos, hidrogeológicos e construtivos dos poços existentes na região para locação do melhor ponto para perfuração do novo poço tubular. Será responsável pelo acompanhamento e fiscalização das obras durante a perfuração e emissão de laudo conclusivo do poço.

Caso sejam necessárias adequações na execução do projeto o orçamento deverá ser reajustado a preço de mercado e conforme descrito nos itens do orçamento, que deverá ser aprovado pelos fiscais designados para fiscalizar os trabalhos.

IV.3 PERFURAÇÃO

O poço será perfurado segundo as Normas da ABNT – NRB 12212 (2017) – Projeto de Poço para Captação de Água Subterrânea e NBR 12244 (2006) – Construção de Poço para Captação de Água Subterrânea.

O método de perfuração será rotativo-pneumático e ocorrerá preferencialmente nas coordenadas pré-definidas, conforme anuência prévia para a perfuração do poço.

Inicialmente o poço será perfurado em 12 polegadas de diâmetro no mínimo em 12 m ou até 3 m abaixo da camada de rochas inconsolidadas/desmoronáveis para posteriormente ser revestido com tubo geomecânico de 6 (seis) polegadas de diâmetro.

Após atingir a rocha não desmoronável e realização do revestimento, a perfuração seguirá com diâmetro de 6 polegadas até a sua profundidade final de 300 m.

IV.4 REGISTRO DE PERFURAÇÃO

Durante os trabalhos de perfuração deverá ser mantido no local da obra e, sempre atualizado, um boletim diário de perfuração contendo as seguintes informações mínimas:

- Diâmetros da perfuração executada.
- Metros perfurados e profundidade total do poço ao fim de cada jornada de trabalho.

- Amostragem do material perfurado.
- Intervalos produtores de água.
- Intervalos de desmoronamentos (quando existentes).
- Intervalos revestidos.

IV.5 FLUIDO DE PERFURAÇÃO

Caso necessário deverá ser utilizado como fluido de perfuração lama a base de bentonita e água doce, ou água doce de polímero (Carboxi-Metil-Celulose ou equivalente).

IV.6 COLETA DE AMOSTRAS DA PERFURAÇÃO

A amostragem do material perfurado deverá ser feita a cada 3,0 m (três metros) e sempre que ocorrer mudança de litologia. Tais amostras deverão ser secadas e colocadas em sacos plásticos numerados, contendo a identificação do poço e do intervalo de profundidade representado.

IV.7 POÇO NÃO PRODUTIVO

Em caso de atingir a profundidade estimada neste projeto de perfuração de poço e não for verificado em teste preliminar vazão adequada (suficiente para atender a população), a empresa responsável pela perfuração deverá executar o tamponamento do poço.

O tamponamento deve impedir que infiltrações superficiais tenham contato com as águas subterrâneas. Dessa forma, o espaço interno deve ser totalmente preenchimento com material inerte a base de brita granítica ou vulcânica, areia ou o material da própria perfuração, até uma profundidade de, no mínimo, 3 (três) metros abaixo do limite superior da rocha sã, sendo toda a parte superior restante, que totalize 20 m iniciais preenchidos com pasta de cimento até a superfície, buscando a máxima vedação sanitária possível.

Independentemente do estabelecimento da profundidade em que se encontra a rocha sã ou mesmo da profundidade que porventura possa existir uma vedação sanitária, o preenchimento com cimento nunca deve ser inferior a 20 metros de profundidade a partir da superfície do terreno, para o caso de poços tubulares, preenchendo-se a parte inferior com o material inerte acima citado.

A saliência da captação existente acima da superfície do terreno deverá ser destruída, sendo que o local do poço após o lacre e tamponamento deverá ficar nivelado com a superfície do terreno.

V PROJETO CONSTRUTIVO FINAL DOS POÇOS

O projeto construtivo final do poço (posicionamento de tubos de revestimentos, filtros, pré-filtro e cimentações), somente poderá ser definido após concluído os trabalhos de execução do furo e mediante presença da fiscalização.

V.1 COMPLETAÇÃO

V.1.1 REVESTIMENTO

O revestimento será em tubulação de PVC do tipo geomecânico standard, nervurado, com diâmetro nominal interno de 6 polegadas. O revestimento deverá ser instalado de forma que possibilite que a boca do poço fique pelo menos 50 cm acima da laje de proteção sanitária.

V.1.2 CIMENTAÇÕES

V.1.2.1 CIMENTAÇÃO PARA PROTEÇÃO SANITÁRIA

A proteção sanitária do poço deverá preencher o espaço anular entre a parede da perfuração e a coluna de revestimento com concreto, com espessura mínima de 75 mm, com a finalidade de preservar a qualidade das águas subterrâneas e de as proteger contra contaminantes e infiltrações de superfície. A profundidade mínima depende da geologia local, sendo recomendada no mínimo 12 m ou 3 m abaixo das rochas inconsolidada. Devido às incertezas esse valor poderá mudar conforme a geologia encontrada na área.

Tal cimentação deverá ser feita através da introdução de uma calda de cimento – água (proporção 50 kg de cimento: 85 litros de água) no espaço anular existente entre o revestimento e a parede da perfuração.

V.1.2.2 CIMENTAÇÃO PARA ISOLAMENTO DE AQUÍFEROS

Visando evitar contribuições de aquíferos indesejáveis e/ou isolamento de formações ferruginosas, sempre que julgado necessário será executada a colocação de um selo de cimento ao longo de toda a extensão do aquífero e/ou formação a ser isolada.

Esta cimentação deverá ser realizada mediante o bombeamento de uma calda de cimento e água através de tubos introduzidos no espaço anular até o local de posicionamento do selo de cimento.

Nenhum outro serviço será executado no poço durante as 24 horas que se seguirem à cimentação. O uso de aditivos ou de cimento de pega rápida será apenas permitido quando condições especiais assim o justificar.

V.2 DESENVOLVIMENTO DO POÇO

Posteriormente a finalização da perfuração deve ser realizado o desenvolvimento do poço a fim de se obter uma melhor eficiência hidráulica, possibilitar a remoção do reboco e do material mais fino da formação aquífera em seu entorno, recuperar a porosidade e permeabilidade do aquífero, permitir captar água isenta deste material.

O desenvolvimento do poço deverá ser realizado da utilização de compressor e deverá prosseguir durante o período que se fizer necessário para a completa limpeza do poço, só podendo ser considerado como concluído quando for atingida uma turbidez menor ou igual 5 (cinco) UT.

O compressor a ser utilizado durante o desenvolvimento deverá ser de alta pressão, com equipamento que permita vazões iguais ou superiores a 60 pcm e pressão igual ou superior a 10 kg/cm².

Nenhum bombeamento efetuado durante o desenvolvimento do poço poderá ser considerado como teste de produção final. Contudo, fica resguardado à contratada o direito de poder utilizálo como um pré-teste.

V.3 TAMPONAMENTO

Após a perfuração o poço deverá ser tamponado (fechado com tampa), assim permanecendo até sua instalação definitiva. Esse tamponamento deverá ser feito utilizando-se um "cap" de alumínio, preso por meio de parafusos à boca do poço.

V.4 SISTEMA DE BOMBEAMENTO

Todas os componentes hidráulicos como conexões, curvas, tês etc. deverão ser instaladas conforme especificação dos fabricantes.

A empresa responsável pela perfuração deverá instalar o conjunto de bombeamento levando em consideração as seguintes premissas:

- O nível dinâmico esperado para o poço é de 260 m.
- O desnível considerado entre a boca do poço e o reservatório é de 3 m.
- A distância aproximada entre o poço e o reservatório (Coordenadas latitude 29°26'33.46"S e longitude 52°54'4.64"O) é de 115 m em linha reta.
- Para o tubo edutor foi considerado tubo de aço de 1 ½".
- Para a tubulação entre o poço até o reservatório considerou-se uma tubulação de plástico de 1 ½ ".
- A soma das perdas de carga é de 370 mca (sem considerar as perdas em curvas e hidrômetro).

Devido as incertezas na execução do projeto, os parâmetros utilizados para o dimensionamento do conjunto de bombeamento poderão ser alterados, o que exigirá recálculos após a definição exata da profundidade do nível estático do poço, dos materiais utilizados para a edução da água até o reservatório e a distância e altitude final do reservatório.

Preliminarmente, está prevista e orçada a instalação de bomba submersa Vanbro bifásica VBOP44, de 11 HP e 56 E (para uma vazão de 5 m³/h), ou uma bomba similar para a perda de carga de 370 mca, cabo elétrico de 3 x 16,0 mm² e tubo de edutor de 1 ½", **conforme planilha orçamentária anexa.**

Além dos materiais já apontados que a empresa responsável pela perfuração deverá instalar, como o conjunto de bombeamento, deverá obrigatoriamente instalar o tubo de monitoramento de ¾ (25mm) de polegada para o monitoramento do nível do poço, que deverá ser instalado até

a profundidade da bomba, hidrômetro para vazão nominal de 5m³/h, bem como a instalação elétrica, cabos e quadro de comando, necessária ao seu perfeito funcionamento em acordo com as especificações técnicas dos fabricantes.

A motobomba ficará suspensa por um flange (tampa de poço) e luva de 1 ½". Imediatamente após a saída do poço, unido a tubulação, será instalada uma curva, uma união e um nipple de 1 ½", luva de 1 ½" e hidrômetro já definido. Todos os tubos devem ser galvanizados a fogo com a finalidade de garantir uma maior durabilidade do equipamento e facilitar futuras manutenções.

A potência e a capacidade da motobomba estão de acordo com a necessidade de vazão para o consumo, assim como a energia elétrica da região e seguindo rigorosamente a recomendação técnica do fabricante do equipamento. O cabo elétrico de alimentação do conjunto motobomba será de 16 x 3 mm, com 300 (trezentos) metros de comprimento e estará ligado ao quadro de comando automático. O quadro de comando deverá ser confeccionado em caixa metálica própria com pintura epóxi anti-corrosiva. Internamente serão instalados fusíveis, bobinas, capacitores, chave contadora, relê térmico, amperímetro e voltímetro para controlar a partida e a energia da motobomba e assegurar a maior durabilidade. O quadro de comando será embutido e instalado em uma edificação de alvenaria ou poste de concreto, cuja instalação será de responsabilidade do município.

Para a tubulação edutora serão utilizados 280 m de tubos de Tubo de Aço Galvanizado a Fogo 1 ½" (48,30 x 3,00 mm x 6 Mts) normatizado NBR 5580 com Roscas BSP.

A obra deverá ser executada por profissionais devidamente capacitados, após o término de toda a instalação, a rede hidráulica deverá ser testada conferindo a estanqueidade de todas as conexões e registros para sua aprovação.

Em caso de alterações de projeto devido a características produtivas do poço, o orçamento adequado proporcionalmente ao preço fornecido com preço de mercado, a ser aprovado pelos fiscais designados para fiscalizar os trabalhos.

V.5 LAJE E PROTEÇÃO SANITÁRIA

Uma vez concluída a perfuração do poço, deverá ser construída uma laje de concreto (traço 1:2:3), com dimensões de 1,50 m x 1,50 m, envolvendo o tubo da boca do poço. Esta laje deverá apresentar uma declividade de 2%, do centro (poço) para a periferia, bem como formar um ressalto de pelo menos 10 cm sobre a superfície do terreno.

V.6 RELATÓRIO FINAL DE PERFURAÇÃO

Uma vez concluído o poço, a contratada, obrigatoriamente, deverá encaminhar à contratante um relatório final do poço. Tal relatório deverá conter pelo menos os seguintes dados básicos:

- Data do início e conclusão do poço;
- Vazão estimada no pré-teste;
- Níveis Estático e Dinâmico aproximado;
- Perfil geológico e construtivo do poço, indicando claramente os intervalos de posicionamento das seções filtrantes, ocorrência de fraturas no cristalino, cimentações, zonas desmoronantes, litologia etc.

VI ETAPAS PÓS PERFURAÇÃO

Após a perfuração e instalação do poço com bomba, tubo edutor e tubo de monitoramento, outra empresa contratada deverá seguir com instalações do sistema de tratamento de água e distribuição.

VI.1 TESTE DE BOMBEAMENTO E RECUPERAÇÃO

O teste de bombeamento de 24h será de responsabilidade da empresa contratada para perfuração do poço. O local previsto para a perfuração do poço não possui padrão de entrada para conectar a bomba, portanto a empresa deverá fornecer gerador com capacidade suficiente para realização do teste.

VI.1.1 REQUISITOS PARA A REALIZAÇÃO DOS TESTES

Antes de iniciar o bombeamento, a contratada deverá se certificar da posição do real do nível estático. Tal comprovação deverá ser obtida efetuando-se pelo menos três medidas da profundidade a cada meia hora.

As medições da profundidade do nível d'água dentro do poço durante o transcorrer do bombeamento deverão, obrigatoriamente, ser efetuadas com a utilização de um medidor elétrico, com fio numerado e com divisões milimétricas por meio de uma marcação identificadora de profundidade. Tal fiação, deverá ser introduzida no poço dentro de uma tubulação auxiliar de ¾", a qual deverá se estender até um metro acima do crivo da bomba.

Na medição da vazão bombeada serão empregados dispositivos que assegurem determinações de vazão com relativa facilidade e precisão. Para vazões de até 40 m³/h, serão empregados recipientes de volume aferido (apenas tambores de 200 a 220 litros), não deformados em bom estado de conservação. Vazões de 40 m³/h, serão determinadas por meio de sistemas contínuos de medida, tais como vertedores, orifício calibrado, tubo de venture e outros.

Depois de concluído a fase de desenvolvimento do poço, serão executados teste de bombeamento e recuperação, a fim de se determinar vazão de exploração dele.

Tais testes somente poderão ser iniciados mediante acompanhamento da fiscalização da contratante.

VI.1.2 TESTE DE BOMBEAMENTO

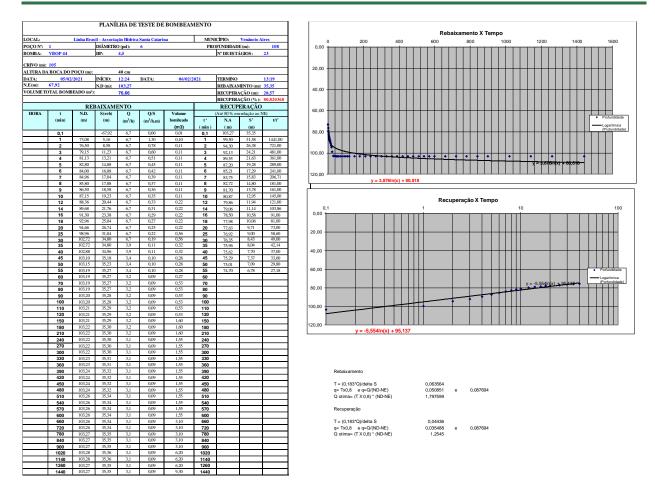
O equipamento a ser utilizado no teste de bombeamento será bomba submersível, devendo o sistema ser dimensionado de forma que possa extrair vazão igual ou superior a capacidade máxima de produção prevista para o poço.

O teste deverá ser executado em única etapa, por uma duração mínima de 24 horas de bombeamento contínuo, e iniciado após 06 horas do poço em completo repouso.

Durante o bombeamento, as medidas de vazão e do nível d'água no interior do poço serão realizadas conforme a frequência de tempos constante no modelo de planilha dado na Figura 9 do presente Projeto Básico.

O teste de bombeamento deverá ser realizado por profissional capacitado mediante a apresentação de ART (Assinatura de Responsabilidade Técnica), que será conferida pelo fiscal do contrato durante a execução do teste.

O medidor de nível deverá possuir graduação milimétrica com a finalidade de obter maior precisão nas leituras de nível.


VI.1.3 TESTE DE RECUPERAÇÃO DO NÍVEL

Uma vez terminado o teste de bombeamento, deve ser efetuado um teste de recuperação de 2 horas caso tenha recuperado 80% do nível rebaixado ou 4 horas de recuperação caso não tenha atingido 80% de recuperação do nível rebaixado.

No teste de recuperação a frequência dos tempos de medida do nível d'água no interior do poço será idêntica à do teste de bombeamento, conforme o modelo de planilha dado na Figura 9.

Figura 9. Modelo de planilha para realização do teste de vazão com apresentação dos resultados em gráfico com escala logarítmica e equação da reta.

VI.2 DESINFECÇÃO

A desinfecção deverá ser feita mediante aplicação de uma solução de Hipoclorito de Sódio à 10%, devendo ser aplicado meio litro de solução para cada metro cúbico de água armazenada dentro do poço.

VI.3 COLETA DE AMOSTRA DE ÁGUA PARA ANÁLISE FÍSICO-QUÍMICA E BACTERIOLÓGICA

A água do poço deverá ser analisada com todos os parâmetros físico-químicos e bacteriológicos necessários para a realização da outorga do poço.

A coleta de amostras de água para análises físico-química e bacteriológica deverá se dar após ter decorrido 24 horas da desinfecção do poço. Tais amostras deverão ser acondicionadas em vasilhames fornecidos por laboratório credenciados pela FEPAM/DRH-RS. Após a coleta as amostras deverão ser conservadas em gelo e enviadas ao laboratório em prazo máximo de 24 horas.

VI.4 CERCAMENTO

Para impedir o acesso de estranhos na área do poço, como também proteger o entorno dele, faz-se necessário à construção de um cercado. A construção do cercado ficará a cargo da empresa responsável pela perfuração.

A área de entorno do poço deve ser protegida com base em alvenaria e/ou concreto, tela, cerca ou outro dispositivo que impeça o acesso de pessoas não autorizadas, e com área mínima de 4 m² de forma a permitir o acesso, operação, manutenção e/ou ampliação futura do poço.

O cercado terá as seguintes características:

- Mourão de cerca em concreto, dimensões de 0,09 x 0,09 x 1,80 metros;
- Escora de mourão em concreto, dimensões de 0,09 x 0,09 x 1,50 metros;
- Arame galvanizado liso 14;
- Tela fio 12 malha 4;
- Portão com quadro tubo galvanizado 1", trinco cadeado, tela de arame galvanizado número 12 – malha 4, com dimensões de 0,8 m de largura e 1,0 m de altura;
- Dimensões do cercado: 2,0 m de largura, 2,0 m de comprimento e altura de 1,50 metro.

VII OUTORGA DE USO DO RECURSO HÍDRICO SUBTERRÂNEO

O poço deverá ser cadastrado no SIOUT e posteriormente ao cadastro, deverá ser realizado o requerimento de outorga para a captação de água, sendo a empresa perfuradora a responsável por essa etapa até a obtenção definitiva da outorga.

Para a realização da outorga o poço deverá estar cercado com grade ou tela, o cercado deve ter dimensões mínimas de 2 m x 2 m e impossibilitar o acesso de estranhos.

Para a finalidade de consumo humano, o poço também deverá estar dotado de dosador de cloro, torneira para coleta de amostra de água e dispor de aparelho medidor de nível.

O perfil geológico e construtivo esperado para o poço segue na Figura 10.

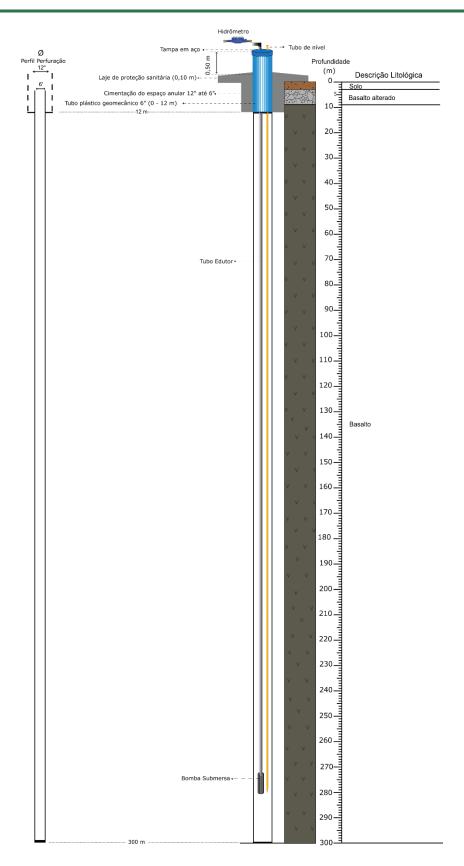


Figura 10. Perfil geológico e construtivo do poço.

VIII IMPLANTAÇÃO DE MEDIDAS MITIGADORAS DE IMPACTO AMBIENTAL E DE SAÚDE DOS PROFISSIONAIS

- As máquinas e equipamentos devem obedecer a horários para operar, diminuindo o ritmo dos trabalhos nos horários considerados de repouso da população vizinha, ou seja, operar entre às 8:00 e 12:00 horas e entre às 13:30 e 18:00 horas.
- Durante a atividade de perfuração deverá ser instalada sinalização luminosa, indicando riscos de acidente.
- Com relação à prevenção para se evitar possíveis vazamentos ou derramamentos de óleos e/ou graxas no local, as máquinas devem estar em perfeitas condições, recomendando-se que a manutenção e o abastecimento delas sejam realizados previamente em locais adequados.
- Todos os funcionários deverão usar EPI's conforme a necessidade.

IX	RESPONS	` ^ \ /
I X		-///-
1.0	DE SECTIVE	3 A V I
	11-01-0110	<i>,,</i> , ,

Jonatas Monteiro da Silva Avelino Geólogo – CREA RS215058 ART - 12837982